Recognition of Handwritten Mathematical Tex
نویسندگان
چکیده
منابع مشابه
Recognition of Handwritten Mathematical Expressions
In recent years, the recognition of handwritten mathematical expressions has recieved an increasing amount of attention in pattern recognition research. The diversity of approaches to the problem and the lack of a commercially viable system, however, indicate that there is still much research to be done in this area. In this thesis, I will describe an on-line approach for converting a handwritt...
متن کاملOn-line Recognition of Handwritten Mathematical Symbols
Finding the name of an unknown symbol is often hard, but writing the symbol is easy. This bachelor’s thesis presents multiple systems that use the pen trajectory to classify handwritten symbols. Five preprocessing steps, one data augmentation algorithm, five features and five variants for multilayer Perceptron training were evaluated using 166 898 recordings which were collected with two crowds...
متن کاملMixture of Experts for Persian handwritten word recognition
This paper presents the results of Persian handwritten word recognition based on Mixture of Experts technique. In the basic form of ME the problem space is automatically divided into several subspaces for the experts, and the outputs of experts are combined by a gating network. In our proposed model, we used Mixture of Experts Multi Layered Perceptrons with Momentum term, in the classification ...
متن کاملSegmentation and recognition of symbols within handwritten mathematical expressions
In this paper an efficient on-line recognition system for symbols within handwritten mathematical expressions is proposed. The system is based on the generation of a symbol hypotheses net and the classification of the elements within the net. The final classification is done by calculating the most probable path through the net under regard of the stroke group probabilities and the probabilitie...
متن کاملRecognition of Handwritten Mathematical Symbols with PHOG Features
Converting handwritten formulas to LaTex is a challenging machine learning problem. An essential step in the recognition of mathematical formulas is the symbol recognition. In this paper we show that pyramids of oriented gradients (PHOG) are effective features for recognizing mathematical symbols. Our best results are obtained using PHOG features along with a one-againstone SVM classifier. We t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Future Generation Communication and Networking
سال: 2016
ISSN: 2233-7857,2233-7857
DOI: 10.14257/ijfgcn.2016.9.8.30